
Home
Categories
Compare
Trends
Documentation
News

Search

Project
combine_pdf

1.13

PDF Generation

A long-lived project that still receives updates

combine_pdfboazsegev/combine_pdfHomepageDocumentationSource CodeBug TrackerWiki

A nifty gem, in pure Ruby, to parse PDF files and combine (merge) them with other PDF files, number the pages, watermark them or stamp them, create tables, add basic text objects etc` (all using the PDF file format).

2005
	
	
	
	

2006
	
	
	
	

2007
	
	
	
	

2008
	
	
	
	

2009
	
	
	
	

2010
	
	
	
	

2011
	
	
	
	

2012
	
	
	
	

2013
	
	
	
	

2014
	
	
	
	

2015
	
	
	
	

2016
	
	
	
	

2017
	
	
	
	

2018
	
	
	
	

2019
	
	
	
	

2020
	
	
	
	

2021
	
	
	
	

2022
	
	
	
	

2023
	
	
	
	

2024
	
	
	
	

 Popularity
Downloads
29,046,827

Stars
713

Forks
141

Watchers
19

 Releases
Current version
1.0.26

Total releases
90

First release
2014-09-04

Latest release
2023-12-22

 Issues
Open Issues
38

Closed Issues
142

Total Issues
180

Issue Closure Rate
78%

 Pull Requests
Open Pull Requests
12

Closed Pull Requests
14

Merged Pull Requests
32

Pull Request Acceptance Rate
55%

 Development
Primary Language
Ruby

Licenses
MIT

Average date of last 50 commits
2021-11-18

Reverse Dependencies
10

 Dependencies

Development

minitest
>= 0

rake
>= 12.3.3

minitest-around
>= 0

Runtime

ruby-rc4
>= 0.1.5

matrix
>= 0

 Project Readme

CombinePDF - the ruby way for merging PDF files

CombinePDF is a nifty model, written in pure Ruby, to parse PDF files and combine (merge) them with other PDF files, watermark them or stamp them (all using the PDF file format and pure Ruby code).

Unmaintained - Help Wanted(!)

I decided to stop maintaining this gem and hope someone could take over the PR reviews and maintenance of this gem (or simply open a successful fork).

I wrote this gem because I needed to solve an issue with bates-numbering existing PDF documents.

However, since 2014 I have been maintaining the gem for free and for no reason at all, except that I enjoyed sharing it with the community.

I love this gem, but I cannot keep maintaining it as I have my own projects to focus own and I need both the time and (more importantly) the mindspace.

Install

Install with ruby gems:

gem install combine_pdf

Known Limitations

Quick rundown:

	
When reading PDF Forms, some form data might be lost. I tried fixing this to the best of my ability, but I'm not sure it all works just yet.

	
When combining PDF Forms, form data might be unified. I couldn't fix this because this is how PDF forms work (filling a field fills in the data in any field with the same name), but frankly, I kinda liked the issue... it's almost a feature.

	
When unifying the same TOC data more then once, one of the references will be unified with the other (meaning that if the pages look the same, both references will link to the same page instead of linking to two different pages). You can fix this by adding content to the pages before merging the PDF files (i.e. add empty text boxes to all the pages).

	
Some links and data (URL links and PDF "Named Destinations") are stored at the root of a PDF and they aren't linked back to from the page. Keeping this information requires merging the PDF objects rather then their pages.

Some links will be lost when ripping pages out of PDF files and merging them with another PDF.

	
Some encrypted PDF files (usually the ones you can't view without a password) will fail quietly instead of noisily. If you prefer to choose the noisy route, you can specify the raise_on_encrypted option using CombinePDF.load(pdf_file, raise_on_encrypted: true) which will raise a CombinePDF::EncryptionError.

	
Sometimes the CombinePDF will raise an exception even if the PDF could be parsed (i.e., when PDF optional content exists)... I find it better to err on the side of caution, although for optional content PDFs an exception is avoidable using CombinePDF.load(pdf_file, allow_optional_content: true).

	
The CombinePDF gem runs recursive code to both parse and format the PDF files. Hence, PDF files that have heavily nested objects, as well as those that where combined in a way that results in cyclic nesting, might explode the stack - resulting in an exception or program failure.

CombinePDF is written natively in Ruby and should (presumably) work on all Ruby platforms that follow Ruby 2.0 compatibility.

However, PDF files are quite complex creatures and no guaranty is provided.

For example, PDF Forms are known to have issues and form data might be lost when attempting to combine PDFs with filled form data (also, forms are global objects, not page specific, so one should combine the whole of the PDF for any data to have any chance of being preserved).

The same applies to PDF links and the table of contents, which all have global attributes and could be corrupted or lost when combining PDF data.

If this library causes loss of data or burns down your house, I'm not to blame - as pointed to by the MIT license. That being said, I'm using the library happily after testing against different solutions.

Combine/Merge PDF files or Pages

To combine PDF files (or data):

pdf = CombinePDF.new
pdf << CombinePDF.load("file1.pdf") # one way to combine, very fast.
pdf << CombinePDF.load("file2.pdf")
pdf.save "combined.pdf"

Or even a one liner:

(CombinePDF.load("file1.pdf") << CombinePDF.load("file2.pdf") << CombinePDF.load("file3.pdf")).save("combined.pdf")

you can also add just odd or even pages:

pdf = CombinePDF.new
i = 0
CombinePDF.load("file.pdf").pages.each do |page|
 i += 1
 pdf << page if i.even?
end
pdf.save "even_pages.pdf"

notice that adding all the pages one by one is slower then adding the whole file.

Add content to existing pages (Stamp / Watermark)

To add content to existing PDF pages, first import the new content from an existing PDF file. After that, add the content to each of the pages in your existing PDF.

In this example, we will add a company logo to each page:

company_logo = CombinePDF.load("company_logo.pdf").pages[0]
pdf = CombinePDF.load "content_file.pdf"
pdf.pages.each {|page| page << company_logo} # notice the << operator is on a page and not a PDF object.
pdf.save "content_with_logo.pdf"

Notice the << operator is on a page and not a PDF object. The << operator acts differently on PDF objects and on Pages.

The << operator defaults to secure injection by renaming references to avoid conflics. For overlaying pages using compressed data that might not be editable (due to limited filter support), you can use:

pdf.pages(nil, false).each {|page| page << stamp_page}

Page Numbering

adding page numbers to a PDF object or file is as simple as can be:

pdf = CombinePDF.load "file_to_number.pdf"
pdf.number_pages
pdf.save "file_with_numbering.pdf"

Numbering can be done with many different options, with different formating, with or without a box object, and even with opacity values - see documentation.

For example, should you prefer to place the page number on the bottom right side of all PDF pages, do:

pdf.number_pages(location: [:bottom_right])

As another example, the dashes around the number are removed and a box is placed around it. The numbering is semi-transparent and the first 3 pages are numbered using letters (a,b,c) rather than numbers:

number first 3 pages as "a", "b", "c"
pdf.number_pages(number_format: " %s ",
 location: [:top, :bottom, :top_left, :top_right, :bottom_left, :bottom_right],
 start_at: "a",
 page_range: (0..2),
 box_color: [0.8,0.8,0.8],
 border_color: [0.4, 0.4, 0.4],
 border_width: 1,
 box_radius: 6,
 opacity: 0.75)
number the rest of the pages as 4, 5, ... etc'
pdf.number_pages(number_format: " %s ",
 location: [:top, :bottom, :top_left, :top_right, :bottom_left, :bottom_right],
 start_at: 4,
 page_range: (3..-1),
 box_color: [0.8,0.8,0.8],
 border_color: [0.4, 0.4, 0.4],
 border_width: 1,
 box_radius: 6,
 opacity: 0.75)

pdf.number_pages(number_format: " %s ", location: :bottom_right, font_size: 44)

Loading and Parsing PDF data

Loading PDF data can be done from file system or directly from the memory.

Loading data from a file is easy:

pdf = CombinePDF.load("file.pdf")

You can also parse PDF files from memory. Loading from the memory is especially effective for importing PDF data recieved through the internet or from a different authoring library such as Prawn:

pdf_data = prawn_pdf_document.render # Import PDF data from Prawn
pdf = CombinePDF.parse(pdf_data)

Using parse is also effective when loading data from a remote location, circumventing the need for unnecessary temporary files. For example:

require 'combine_pdf'
require 'net/http'

url = "https://example.com/my.pdf"
pdf = CombinePDF.parse Net::HTTP.get_response(URI.parse(url)).body

Rendering PDF data

Similarly, to loading and parsing, rendering can also be performed either to the memory or to a file.

You can output a string of PDF data using .to_pdf. For example, to let a user download the PDF from either a Rails application or a Plezi application:

in a controller action
send_data combined_file.to_pdf, filename: "combined.pdf", type: "application/pdf"

In Sinatra:

in your path's block
status 200
body combined_file.to_pdf
headers 'content-type' => "application/pdf"

If you prefer to save the PDF data to a file, you can always use the save method as we did in our earlier examples.

Some PDF files contain optional content sections which cannot always be merged reliably. By default, an exception is
raised if one of these files are detected. You can optionally pass an allow_optional_content parameter to the
PDFParser.new, CombinePDF.load and CombinePDF.parse methods:

new_pdf = CombinePDF.new
new_pdf << CombinePDF.load(pdf_file, allow_optional_content: true)
attachments.each { |att| new_pdf << CombinePDF.load(att, allow_optional_content: true) }

Demo

You can see a Demo for a "Bates stumping web-app" and read through it's code . Good luck :)

Decryption & Filters

Some PDF files are encrypted and some are compressed (the use of filters)...

There is very little support for encrypted files and very very basic and limited support for compressed files.

I need help with that.

Comments and file structure

If you want to help with the code, please be aware:

I'm a self learned hobbiest at heart. The documentation is lacking and the comments in the code are poor guidlines.

The code itself should be very straight forward, but feel free to ask whatever you want.

Credit

Stefan Leitner (@sLe1tner) wrote the outline merging code supporting PDFs which contain a ToC.

Caige Nichols wrote an amazing RC4 gem which I used in my code.

I wanted to install the gem, but I had issues with the internet and ended up copying the code itself into the combine_pdf_decrypt class file.

Credit to his wonderful is given here. Please respect his license and copyright... and mine.

License

MIT

Contributions

You can look at the GitHub Issues Page and see the "help wanted" tags.

If you're thinking of donations or sending me money - no need. This project can sustain itself without your money.

What this project needs is the time given by caring developers who keep it up to date and fix any documentation errors or issues they notice ... having said that, gifts (such as free coffee or iTunes gift cards) are always fun. But I think there are those in real need that will benefit more from your generosity.

Navigation
	Home
	Categories
	Trends
	Documentation
	News
	Search

Who
The Ruby Toolbox is brought to you from Hamburg since 2009 by Christoph Olszowka

If you want to personally say hi or complain, you can do so via mail to me at christoph (at) ruby-toolbox (dot) com

You can also find me on Twitter as @thedeadserious
and on Github

Contributing
You can find the source code for this site on github.

The categorization of gems is handled via the catalog, which you can also find on
Github

 Contributions welcome !

Links
	Code of Conduct
	Community Chat Room
	RSS Feed
	rubytoolbox/rubytoolbox
	rubytoolbox/catalog
	Production Database Exports

Sponsors

Development funded by

Monitored with

Thank You!

