Project

laicrypto

0.0
The project is in a healthy, maintained state
LAI is a promising post-quantum cryptosystem based on isogenies of elliptic curves over lemniscate lattices, offering resistance against quantum-capable adversaries.
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
 Dependencies
 Project Readme

pqcrypto

pqcrypto Logo

PyPI version PyPI downloads npm version npm downloads RubyGems version RubyGems downloads NuGet version NuGet downloads

Post-Quantum Lemniscate-AGM Isogeny (LAI) Encryption

A multi-language reference implementation of the Lemniscate-AGM Isogeny (LAI) encryption scheme.
LAI is a promising post-quantum cryptosystem based on isogenies of elliptic curves over lemniscate lattices, offering conjectured resistance against quantum-capable adversaries.


Table of Contents

  1. Project Overview
  2. Mathematical Formulation
  3. Features
  4. Releases & Package Managers
    4.1. Python (PyPI)
    4.2. JavaScript (npm)
    4.3. Ruby (RubyGems)
    4.4. .NET (NuGet)
    4.5. Java (Maven)
  5. Usage Examples
    5.1. Python
    5.2. JavaScript
    5.3. Ruby
    5.4. .NET (C#)
    5.5. Java
  6. API Reference
  7. Testing
  8. Contributing & Development
  9. License

Project Overview

This library implements all core mathematical primitives and high-level APIs for LAI:

  • Hash-Based Seed Function
    $$( H(x, y, s) = \mathrm{SHA256}\bigl(x,|,y,|,s\bigr) \bmod p )$$

  • Modular Square Root via Tonelli–Shanks (with fast branch if $$(p \equiv 3 \pmod 4)$$).

  • LAI Transformation

    $$[ T\bigl((x,y),,s;,a,,p\bigr) ;=; \Bigl(, x' ;=; \tfrac{x + a + h}{2} \bmod p,;; y' ;=; \sqrt{x,y + h}\bmod p \Bigr) ] $$

    where $$(h = H(x,y,s))$$.

  • Binary Exponentiation of $$(T)$$ to compute $$(T^k(P_0))$$ in $$(O(\log k)$$) time.

  • Key Generation, Encryption, and Decryption routines for integer messages $$(0 \le m < p)$$.

  • Bulk JSON Decryption: decrypt an entire JSON payload into raw bytes (e.g., to reconstruct a file or UTF-8 text).

All language‐specific wrappers expose identical API semantics under the hood. This makes pqcrypto ideal for cross-platform experiments, research, and educational purposes.


Mathematical Formulation

1. Hash-Based Seed Function

For $$(x, y, s \in \mathbb{Z}_p)$$, define:

$$ [ H(x, y, s) ;=; \mathrm{SHA256}\bigl(\text{bytes}(x),|,\text{bytes}(y),|,\text{bytes}(s)\bigr);\bmod;p, ] $$

where $$“(|)”$$ denotes concatenation of the big-endian byte representations.

2. Modular Square Root (Tonelli–Shanks)

Solve $$(z^2 \equiv a \pmod p) for prime (p)$$:

  • If $$(p \equiv 3 \pmod 4)$$:

$$ [ z = a^{\frac{p+1}{4}} \bmod p. ] $$

  • Otherwise: apply the general Tonelli–Shanks algorithm in $$(O(\log^2 p))$$ time.

3. LAI Transformation $$(T)$$

Given $$((x,y)\in\mathbb{F}_p^2)$$, parameter $$(a)$$, and seed index $$(s)$$, define

$$ \begin{cases} h = H(x,,y,,s),[6pt] x' = \dfrac{x + a + h}{2}\bmod p,[6pt] y' = \sqrt{x,y + h};\bmod p. \end{cases} $$

Thus $$(;T\bigl((x,y),s;a,p\bigr) = (,x',,y',))$$.

4. Binary Exponentiation of $$(T)$$

To compute $$(T^k(P_0))$$ efficiently:


function pow_T(P, k):
   result ← P
   base   ← P
   s      ← 1
   while k > 0:
      if (k mod 2) == 1:
         result ← T(result, s)
         base ← T(base, s)
         k    ← k >> 1
         s    ← s + 1
   return result

5. Algorithmic API

Key Generation


function keygen(p, a, P0):
   k ← random integer in [1, p−1]
   Q ← pow_T(P0, k)
   return (k, Q)

Encryption


function encrypt(m, Q, p, a, P0):
   r  ← random integer in [1, p−1]
   C1 ← pow_T(P0, r)
   Sr ← pow_T(Q, r)
   M  ← (m mod p, 0)
   C2 ← ((M.x + Sr.x) mod p, (M.y + Sr.y) mod p)
   return (C1, C2)

Decryption


function decrypt(C1, C2, k, a, p):
   S   ← pow_T(C1, k)
   M.x ← (C2.x − S.x) mod p
   return M.x

Bulk Decryption (JSON)


function decryptAll(jsonPayload):
   parse p, a, P0, k, blocks[]
   for each block in blocks:
      (x1,y1) = block.C1
      (x2,y2) = block.C2
      r       = block.r
      M_int   = decrypt((x1,y1),(x2,y2),k,r,a,p)
      convert M_int into fixed-length big-endian B-byte chunk
      append to output byte buffer
   return outputBuffer


Features

  1. Pure Implementations (no native code)

    • Python: only uses hashlib, secrets (stdlib).
    • JavaScript: pure JS/BigInt.
    • Ruby: pure Ruby + openssl.
    • C#: uses System.Numerics.BigInteger (no external C/C++).
    • Java: uses java.math.BigInteger + Jackson for JSON.
  2. Mathematically Annotated
    Every function corresponds exactly to the paper’s formulas.

  3. Modular Design
    Separation of low‐level primitives (H, sqrt_mod, T) from high‐level API (keygen, encrypt, decrypt).

  4. General & Optimized

    • Fast branch for $$(p\equiv3\pmod4)$$.
    • Full Tonelli–Shanks fallback for any odd prime.
  5. Bulk JSON Decryption
    Produce or consume large ciphertext payloads (e.g., encrypted files, JavaScript code, JSON blobs).

  6. CI/CD Ready

    • Python: auto‐publish to PyPI via GitHub Actions.
    • JS: auto‐publish to npm.
    • Ruby: auto‐publish to RubyGems.
    • C#: auto‐publish to NuGet & GitHub Packages.
    • Java: auto‐publish to GitHub Packages (Maven).

Releases & Package Managers

Python (PyPI)

pip install laicrypto

JavaScript (npm)

npm install @galihru/pqlaicrypto

Ruby (RubyGems)

gem install laicrypto

.NET (NuGet)

<PackageReference Include="PQCrypto.Lai" Version="0.1.0" />

Java (Maven Central / GitHub Packages)

<dependency>
  <groupId>com.pelajaran.pqcrypto</groupId>
  <artifactId>laicrypto</artifactId>
  <version>0.1.0</version>
</dependency>

Usage Examples

Below are minimal “hello, world”-style code snippets for each language wrapper.

Python

import math
from pqcrypto import keygen, encrypt, decrypt

# 1. Setup parameters
p = 10007
a = 5
P0 = (1, 0)

# 2. Generate keypair
private_k, public_Q = keygen(p, a, P0)
print("Private k:", private_k)
print("Public  Q:", public_Q)

# 3. Encrypt integer m
message = 2024
C1, C2 = encrypt(message, public_Q, p, a, P0)
print("C1:", C1, " C2:", C2)

# 4. Decrypt using private_k
recovered = decrypt(C1, C2, private_k, a, p)
print("Recovered:", recovered)
assert recovered == message

If you need to encrypt an entire text/file, convert it to integer blocks via int.from_bytes(...), then call encrypt(...) on each block. See the Python demo in this README for details.

JavaScripts

// Install: npm install pqlaicrypto

const { keygen, encrypt, decrypt } = require("pqlaicrypto");

const p = 10007n;
const a = 5n;
const P0 = [1n, 0n];

// 1. Generate keypair
const { k, Q } = keygen(p, a, P0);
console.log("Private k:", k.toString());
console.log("Public  Q:", Q);

// 2. Encrypt a small integer
const m = 2024n;
const { C1, C2, r } = encrypt(m, Q, k, p, a, P0);
console.log("C1:", C1, "C2:", C2, "r:", r.toString());

// 3. Decrypt
const recovered = decrypt(C1, C2, k, r, a, p);
console.log("Recovered:", recovered.toString());

Use BigInt-aware file/block conversions to encrypt larger messages or files.

Ruby

# Install: gem install laicrypto
require "laicrypto"

p  = 10007
a  = 5
P0 = [1, 0]

# 1. Generate keypair
k, Q = LAI.keygen(p, a, P0)
puts "Private k: #{k}"
puts "Public  Q: #{Q.inspect}"

# 2. Encrypt integer
message = 2024
C1, C2, r = LAI.encrypt(message, Q, k, p, a, P0)
puts "C1: #{C1.inspect}  C2: #{C2.inspect}  r: #{r}"

# 3. Decrypt
recovered = LAI.decrypt(C1, C2, k, r, a, p)
puts "Recovered: #{recovered}"

Similar to Python, convert larger text to integer blocks using String#bytes and Integer().

.NET (C#)

// Install via NuGet: 
//   <PackageReference Include="PQCrypto.Lai" Version="0.1.0" />

using System;
using System.Numerics;
using PQCrypto; // namespace containing LaiCrypto

class Demo {
    static void Main(string[] args) {
        // 1. Setup parameters
        BigInteger p = 10007;
        BigInteger a = 5;
        LaiCrypto.Point P0 = new LaiCrypto.Point(1, 0);

        // 2. Generate keypair
        var kp = LaiCrypto.KeyGen(p, a, P0);
        Console.WriteLine($"Private k: {kp.k}");
        Console.WriteLine($"Public  Q: ({kp.Q.x}, {kp.Q.y})");

        // 3. Encrypt integer
        BigInteger message = 2024;
        var ct = LaiCrypto.Encrypt(message, kp.Q, p, a, P0);
        Console.WriteLine($"C1: ({ct.C1.x}, {ct.C1.y})  C2: ({ct.C2.x}, {ct.C2.y})  r: {ct.r}");

        // 4. Decrypt
        BigInteger recovered = LaiCrypto.Decrypt(ct.C1, ct.C2, kp.k, ct.r, a, p);
        Console.WriteLine($"Recovered: {recovered}");
        if (recovered != message) throw new Exception("Decryption mismatch!");
    }
}

To decrypt a JSON payload:

using System.IO;
using Newtonsoft.Json.Linq; // or System.Text.Json

var json = File.ReadAllText("ciphertext.json");
var jNode = JObject.Parse(json);
byte[] plaintextBytes = LaiCrypto.DecryptAll(jNode);
string plaintext = System.Text.Encoding.UTF8.GetString(plaintextBytes);

Java

<!-- In your pom.xml -->
<dependency>
  <groupId>com.pelajaran.pqcrypto</groupId>
  <artifactId>laicrypto</artifactId>
  <version>0.1.0</version>
</dependency>
import com.pelajaran.pqcrypto.LaiCrypto;
import com.pelajaran.pqcrypto.LaiCrypto.Point;
import com.pelajaran.pqcrypto.LaiCrypto.KeyPair;
import com.pelajaran.pqcrypto.LaiCrypto.Ciphertext;

import java.math.BigInteger;

public class LAIDemo {
    public static void main(String[] args) throws Exception {
        // 1. Setup
        BigInteger p = BigInteger.valueOf(10007);
        BigInteger a = BigInteger.valueOf(5);
        Point P0 = new Point(BigInteger.ONE, BigInteger.ZERO);

        // 2. Generate key pair
        KeyPair kp = LaiCrypto.keyGen(p, a, P0);
        System.out.println("Private k: " + kp.k);
        System.out.println("Public  Q: (" + kp.Q.x + ", " + kp.Q.y + ")");

        // 3. Encrypt integer
        BigInteger message = BigInteger.valueOf(2024);
        Ciphertext ct = LaiCrypto.encrypt(message, kp.Q, p, a, P0);
        System.out.println("C1: (" + ct.C1.x + ", " + ct.C1.y + ")");
        System.out.println("C2: (" + ct.C2.x + ", " + ct.C2.y + ")");
        System.out.println("r:  " + ct.r);

        // 4. Decrypt
        BigInteger recovered = LaiCrypto.decrypt(ct.C1, ct.C2, kp.k, ct.r, a, p);
        System.out.println("Recovered: " + recovered);
    }
}

To decrypt a JSON payload in Java:

import com.fasterxml.jackson.databind.ObjectMapper;
import com.fasterxml.jackson.databind.JsonNode;

// ...
ObjectMapper mapper = new ObjectMapper();
JsonNode root = mapper.readTree(new File("ciphertext.json"));
byte[] plaintextBytes = LaiCrypto.decryptAll(root);
String plaintext = new String(plaintextBytes, StandardCharsets.UTF_8);

API Reference

Function Description
H(x: BigInt, y: BigInt, s: BigInt, p: BigInt) → BigInt SHA-256(x | y | s) mod p.
sqrt_mod(a: BigInt, p: BigInt) → BigInt or null Compute $\sqrt{a} \bmod p$. Returns null if no root exists.
T(point: (BigInt,BigInt), s: BigInt, a: BigInt, p: BigInt) → (BigInt,BigInt) One LAI transform step.
pow_T(P, startS: BigInt, exp: BigInt, a: BigInt, p: BigInt) → (BigInt,BigInt) Compute $T^{\text{exp}}(P)$ by exponentiation by squaring.
keygen(p: BigInt, a: BigInt, P0: (BigInt,BigInt)) → (k: BigInt, Q: (BigInt,BigInt)) Generate a random private key k and public point Q = Tᵏ(P₀).
encrypt(m: BigInt, Q: (BigInt,BigInt), k: BigInt, p: BigInt, a: BigInt, P0: (BigInt,BigInt)) → (C1, C2, r) Encrypt integer m (< p) yielding C1, C2, and randomness r.
decrypt(C1: (BigInt,BigInt), C2: (BigInt,BigInt), k: BigInt, r: BigInt, a: BigInt, p: BigInt) → BigInt Decrypt one block, returning the original integer m.
decryptAll(jsonPayload) → byte[] Read entire JSON ciphertext payload (array of blocks) and return concatenated plaintext bytes.

Testing

Each language wrapper includes its own test suite:

  • Python:

    pytest --disable-warnings -q
  • JavaScript:

    npm test
  • Ruby:

    bundle exec rspec
  • .NET (C#):

    dotnet test
  • Java (Maven):

    mvn test

Make sure all tests pass locally before opening a pull request.


Contributing & Development

  1. Fork the repository

  2. Create a feature branch

    git checkout -b feature/your_feature
  3. Implement changes

    • Add or fix primitives/pseudo-code as needed.
    • Add unit tests for any new functionality.
  4. Run tests in all supported languages.

  5. Commit & push, then open a pull request.

Please follow PEP 8 style in Python, StandardJS in JavaScript, Ruby Style Guide, C# coding conventions, and Java conventions. Include thorough documentation for any new API.


License

This project is licensed under the MIT License.