Project

puma

A long-lived project that still receives updates
Puma is a simple, fast, threaded, and highly parallel HTTP 1.1 server for Ruby/Rack applications. Puma is intended for use in both development and production environments. It's great for highly parallel Ruby implementations such as Rubinius and JRuby as well as as providing process worker support to support CRuby well.
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
 Dependencies

Runtime

~> 2.0
 Project Readme

Puma: A Ruby Web Server Built For Parallelism

Actions Code Climate StackOverflow

Puma is a simple, fast, multi-threaded, and highly parallel HTTP 1.1 server for Ruby/Rack applications.

Built For Speed & Parallelism

Puma is a server for Rack-powered HTTP applications written in Ruby. It is:

  • Multi-threaded. Each request is served in a separate thread. This helps you serve more requests per second with less memory use.
  • Multi-process. "Pre-forks" in cluster mode, using less memory per-process thanks to copy-on-write memory.
  • Standalone. With SSL support, zero-downtime rolling restarts and a built-in request bufferer, you can deploy Puma without any reverse proxy.
  • Battle-tested. Our HTTP parser is inherited from Mongrel and has over 15 years of production use. Puma is currently the most popular Ruby webserver, and is the default server for Ruby on Rails.

Originally designed as a server for Rubinius, Puma also works well with Ruby (MRI) and JRuby.

On MRI, there is a Global VM Lock (GVL) that ensures only one thread can run Ruby code at a time. But if you're doing a lot of blocking IO (such as HTTP calls to external APIs like Twitter), Puma still improves MRI's throughput by allowing IO waiting to be done in parallel. Truly parallel Ruby implementations (TruffleRuby, JRuby) don't have this limitation.

Quick Start

$ gem install puma
$ puma

Without arguments, puma will look for a rackup (.ru) file in working directory called config.ru.

SSL Connection Support

Puma will install/compile with support for ssl sockets, assuming OpenSSL development files are installed on the system.

If the system does not have OpenSSL development files installed, Puma will install/compile, but it will not allow ssl connections.

Frameworks

Rails

Puma is the default server for Rails, included in the generated Gemfile.

Start your server with the rails command:

$ rails server

Many configuration options and Puma features are not available when using rails server. It is recommended that you use Puma's executable instead:

$ bundle exec puma

Sinatra

You can run your Sinatra application with Puma from the command line like this:

$ ruby app.rb -s Puma

In order to actually configure Puma using a config file, like puma.rb, however, you need to use the puma executable. To do this, you must add a rackup file to your Sinatra app:

# config.ru
require './app'
run Sinatra::Application

You can then start your application using:

$ bundle exec puma

Configuration

Puma provides numerous options. Consult puma -h (or puma --help) for a full list of CLI options, or see Puma::DSL or dsl.rb.

You can also find several configuration examples as part of the test suite.

For debugging purposes, you can set the environment variable PUMA_LOG_CONFIG with a value and the loaded configuration will be printed as part of the boot process.

Thread Pool

Puma uses a thread pool. You can set the minimum and maximum number of threads that are available in the pool with the -t (or --threads) flag:

$ puma -t 8:32

Puma will automatically scale the number of threads, from the minimum until it caps out at the maximum, based on how much traffic is present. The current default is 0:16 and on MRI is 0:5. Feel free to experiment, but be careful not to set the number of maximum threads to a large number, as you may exhaust resources on the system (or cause contention for the Global VM Lock, when using MRI).

Be aware that additionally Puma creates threads on its own for internal purposes (e.g. handling slow clients). So, even if you specify -t 1:1, expect around 7 threads created in your application.

Clustered mode

Puma also offers "clustered mode". Clustered mode forks workers from a master process. Each child process still has its own thread pool. You can tune the number of workers with the -w (or --workers) flag:

$ puma -t 8:32 -w 3

Or with the WEB_CONCURRENCY environment variable:

$ WEB_CONCURRENCY=3 puma -t 8:32

Note that threads are still used in clustered mode, and the -t thread flag setting is per worker, so -w 2 -t 16:16 will spawn 32 threads in total, with 16 in each worker process.

For an in-depth discussion of the tradeoffs of thread and process count settings, see our docs.

In clustered mode, Puma can "preload" your application. This loads all the application code prior to forking. Preloading reduces total memory usage of your application via an operating system feature called copy-on-write.

If the WEB_CONCURRENCY environment variable is set to a value > 1 (and --prune-bundler has not been specified), preloading will be enabled by default. Otherwise, you can use the --preload flag from the command line:

$ puma -w 3 --preload

Or, if you're using a configuration file, you can use the preload_app! method:

# config/puma.rb
workers 3
preload_app!

Preloading can’t be used with phased restart, since phased restart kills and restarts workers one-by-one, and preloading copies the code of master into the workers.

Clustered mode hooks

When using clustered mode, Puma's configuration DSL provides before_fork and on_worker_boot hooks to run code when the master process forks and child workers are booted respectively.

It is recommended to use these hooks with preload_app!, otherwise constants loaded by your application (such as Rails) will not be available inside the hooks.

# config/puma.rb
before_fork do
  # Add code to run inside the Puma master process before it forks a worker child.
end

on_worker_boot do
  # Add code to run inside the Puma worker process after forking.
end

In addition, there is an on_refork hook which is used only in fork_worker mode, when the worker 0 child process forks a grandchild worker:

on_refork do
  # Used only when fork_worker mode is enabled. Add code to run inside the Puma worker 0
  # child process before it forks a grandchild worker.
end

Importantly, note the following considerations when Ruby forks a child process:

  1. File descriptors such as network sockets are copied from the parent to the forked child process. Dual-use of the same sockets by parent and child will result in I/O conflicts such as SocketError, Errno::EPIPE, and EOFError.
  2. Background Ruby threads, including threads used by various third-party gems for connection monitoring, etc., are not copied to the child process. Often this does not cause immediate problems until a third-party connection goes down, at which point there will be no supervisor to reconnect it.

Therefore, we recommend the following:

  1. If possible, do not establish any socket connections (HTTP, database connections, etc.) inside Puma's master process when booting.
  2. If (1) is not possible, use before_fork and on_refork to disconnect the parent's socket connections when forking, so that they are not accidentally copied to the child process.
  3. Use on_worker_boot to restart any background threads on the forked child.

Master process lifecycle hooks

Puma's configuration DSL provides master process lifecycle hooks on_booted, on_restart, and on_stopped which may be used to specify code blocks to run on each event:

# config/puma.rb
on_booted do
  # Add code to run in the Puma master process after it boots,
  # and also after a phased restart completes.
end

on_restart do
  # Add code to run in the Puma master process when it receives
  # a restart command but before it restarts.
end

on_stopped do
  # Add code to run in the Puma master process when it receives
  # a stop command but before it shuts down.
end

Error handling

If Puma encounters an error outside of the context of your application, it will respond with a 400/500 and a simple textual error message (see Puma::Server#lowlevel_error or server.rb). You can specify custom behavior for this scenario. For example, you can report the error to your third-party error-tracking service (in this example, rollbar):

lowlevel_error_handler do |e, env, status|
  if status == 400
    message = "The server could not process the request due to an error, such as an incorrectly typed URL, malformed syntax, or a URL that contains illegal characters.\n"
  else
    message = "An error has occurred, and engineers have been informed. Please reload the page. If you continue to have problems, contact support@example.com\n"
    Rollbar.critical(e)
  end

  [status, {}, [message]]
end

Binding TCP / Sockets

Bind Puma to a socket with the -b (or --bind) flag:

$ puma -b tcp://127.0.0.1:9292

To use a UNIX Socket instead of TCP:

$ puma -b unix:///var/run/puma.sock

If you need to change the permissions of the UNIX socket, just add a umask parameter:

$ puma -b 'unix:///var/run/puma.sock?umask=0111'

Need a bit of security? Use SSL sockets:

$ puma -b 'ssl://127.0.0.1:9292?key=path_to_key&cert=path_to_cert'

Self-signed SSL certificates (via the localhost gem, for development use):

Puma supports the localhost gem for self-signed certificates. This is particularly useful if you want to use Puma with SSL locally, and self-signed certificates will work for your use-case. Currently, the integration can only be used in MRI.

Puma automatically configures SSL when the localhost gem is loaded in a development environment:

Add the gem to your Gemfile:

group(:development) do
  gem 'localhost'
end

And require it implicitly using bundler:

require "bundler"
Bundler.require(:default, ENV["RACK_ENV"].to_sym)

Alternatively, you can require the gem in your configuration file, either config/puma/development.rb, config/puma.rb, or set via the -C cli option:

require 'localhost'
# configuration methods (from Puma::DSL) as needed

Additionally, Puma must be listening to an SSL socket:

$ puma -b 'ssl://localhost:9292' -C config/use_local_host.rb

# The following options allow you to reach Puma over HTTP as well:
$ puma -b ssl://localhost:9292 -b tcp://localhost:9393 -C config/use_local_host.rb

Controlling SSL Cipher Suites

To use or avoid specific SSL ciphers for TLSv1.2 and below, use ssl_cipher_filter or ssl_cipher_list options.

Ruby:
$ puma -b 'ssl://127.0.0.1:9292?key=path_to_key&cert=path_to_cert&ssl_cipher_filter=!aNULL:AES+SHA'
JRuby:
$ puma -b 'ssl://127.0.0.1:9292?keystore=path_to_keystore&keystore-pass=keystore_password&ssl_cipher_list=TLS_RSA_WITH_AES_128_CBC_SHA,TLS_RSA_WITH_AES_256_CBC_SHA'

To configure the available TLSv1.3 ciphersuites, use ssl_ciphersuites option (not available for JRuby).

Ruby:
$ puma -b 'ssl://127.0.0.1:9292?key=path_to_key&cert=path_to_cert&ssl_ciphersuites=TLS_AES_256_GCM_SHA384:TLS_AES_128_GCM_SHA256'

See https://www.openssl.org/docs/man1.1.1/man1/ciphers.html for cipher filter format and full list of cipher suites.

Disable TLS v1 with the no_tlsv1 option:

$ puma -b 'ssl://127.0.0.1:9292?key=path_to_key&cert=path_to_cert&no_tlsv1=true'

Controlling OpenSSL Verification Flags

To enable verification flags offered by OpenSSL, use verification_flags (not available for JRuby):

$ puma -b 'ssl://127.0.0.1:9292?key=path_to_key&cert=path_to_cert&verification_flags=PARTIAL_CHAIN'

You can also set multiple verification flags (by separating them with a comma):

$ puma -b 'ssl://127.0.0.1:9292?key=path_to_key&cert=path_to_cert&verification_flags=PARTIAL_CHAIN,CRL_CHECK'

List of available flags: USE_CHECK_TIME, CRL_CHECK, CRL_CHECK_ALL, IGNORE_CRITICAL, X509_STRICT, ALLOW_PROXY_CERTS, POLICY_CHECK, EXPLICIT_POLICY, INHIBIT_ANY, INHIBIT_MAP, NOTIFY_POLICY, EXTENDED_CRL_SUPPORT, USE_DELTAS, CHECK_SS_SIGNATURE, TRUSTED_FIRST, SUITEB_128_LOS_ONLY, SUITEB_192_LOS, SUITEB_128_LOS, PARTIAL_CHAIN, NO_ALT_CHAINS, NO_CHECK_TIME (see https://www.openssl.org/docs/manmaster/man3/X509_VERIFY_PARAM_set_hostflags.html#VERIFICATION-FLAGS).

Controlling OpenSSL Password Decryption

To enable runtime decryption of an encrypted SSL key (not available for JRuby), use key_password_command:

$ puma -b 'ssl://127.0.0.1:9292?key=path_to_key&cert=path_to_cert&key_password_command=/path/to/command.sh'

key_password_command must:

  1. Be executable by Puma.
  2. Print the decryption password to stdout.

For example:

#!/bin/sh

echo "this is my password"

key_password_command can be used with key or key_pem. If the key is not encrypted, the executable will not be called.

Control/Status Server

Puma has a built-in status and control app that can be used to query and control Puma.

$ puma --control-url tcp://127.0.0.1:9293 --control-token foo

Puma will start the control server on localhost port 9293. All requests to the control server will need to include control token (in this case, token=foo) as a query parameter. This allows for simple authentication. Check out Puma::App::Status or status.rb to see what the status app has available.

You can also interact with the control server via pumactl. This command will restart Puma:

$ pumactl --control-url 'tcp://127.0.0.1:9293' --control-token foo restart

To see a list of pumactl options, use pumactl --help.

Configuration File

You can also provide a configuration file with the -C (or --config) flag:

$ puma -C /path/to/config

If no configuration file is specified, Puma will look for a configuration file at config/puma.rb. If an environment is specified (via the --environment flag or through the APP_ENV, RACK_ENV, or RAILS_ENV environment variables) Puma looks for a configuration file at config/puma/<environment_name>.rb and then falls back to config/puma.rb.

If you want to prevent Puma from looking for a configuration file in those locations, include the --no-config flag:

$ puma --no-config

# or

$ puma -C "-"

The other side-effects of setting the environment are whether to show stack traces (in development or test), and setting RACK_ENV may potentially affect middleware looking for this value to change their behavior. The default puma RACK_ENV value is development. You can see all config default values in Puma::Configuration#puma_default_options or configuration.rb.

Check out Puma::DSL or dsl.rb to see all available options.

Restart

Puma includes the ability to restart itself. When available (MRI, Rubinius, JRuby), Puma performs a "hot restart". This is the same functionality available in Unicorn and NGINX which keep the server sockets open between restarts. This makes sure that no pending requests are dropped while the restart is taking place.

For more, see the Restart documentation.

Signals

Puma responds to several signals. A detailed guide to using UNIX signals with Puma can be found in the Signals documentation.

Platform Constraints

Some platforms do not support all Puma features.

  • JRuby, Windows: server sockets are not seamless on restart, they must be closed and reopened. These platforms have no way to pass descriptors into a new process that is exposed to Ruby. Also, cluster mode is not supported due to a lack of fork(2).
  • Windows: Cluster mode is not supported due to a lack of fork(2).
  • Kubernetes: The way Kubernetes handles pod shutdowns interacts poorly with server processes implementing graceful shutdown, like Puma. See the kubernetes section of the documentation for more details.

Known Bugs

For MRI versions 2.2.7, 2.2.8, 2.2.9, 2.2.10, 2.3.4 and 2.4.1, you may see stream closed in another thread (IOError). It may be caused by a Ruby bug. It can be fixed with the gem https://rubygems.org/gems/stopgap_13632:

if %w(2.2.7 2.2.8 2.2.9 2.2.10 2.3.4 2.4.1).include? RUBY_VERSION
  begin
    require 'stopgap_13632'
  rescue LoadError
  end
end

Deployment

  • Puma has support for Capistrano with an external gem.

  • Additionally, Puma has support for built-in daemonization via the puma-daemon ruby gem. The gem restores the daemonize option that was removed from Puma starting version 5, but only for MRI Ruby.

It is common to use process monitors with Puma. Modern process monitors like systemd or rc.d provide continuous monitoring and restarts for increased reliability in production environments:

Community guides:

Community Extensions

Plugins

  • puma-metrics — export Puma metrics to Prometheus
  • puma-plugin-statsd — send Puma metrics to statsd
  • puma-plugin-systemd — deeper integration with systemd for notify, status and watchdog. Puma 5.1.0 integrated notify and watchdog, which probably conflicts with this plugin. Puma 6.1.0 added status support which obsoletes the plugin entirely.
  • puma-plugin-telemetry - telemetry plugin for Puma offering various targets to publish
  • puma-acme - automatic SSL/HTTPS certificate provisioning and setup

Monitoring

  • puma-status — Monitor CPU/Mem/Load of running puma instances from the CLI

Contributing

Find details for contributing in the contribution guide.

License

Puma is copyright Evan Phoenix and contributors, licensed under the BSD 3-Clause license. See the included LICENSE file for details.