0.03
The project is in a healthy, maintained state
Ruby client library for integrating with Model Context Protocol (MCP) servers to access and invoke tools from AI assistants
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
 Dependencies

Development

~> 6.5
~> 3.12
~> 1.62
~> 0.9.34

Runtime

 Project Readme

ruby-mcp-client

A Ruby client for the Model Context Protocol (MCP), enabling integration with external tools and services via a standardized protocol.

Installation

# Gemfile
gem 'ruby-mcp-client'
bundle install
# or
gem install ruby-mcp-client

Overview

MCP enables AI assistants to discover and invoke external tools via different transport mechanisms:

  • stdio - Local processes implementing the MCP protocol
  • SSE - Server-Sent Events with streaming support
  • HTTP - Simple request/response (non-streaming)
  • Streamable HTTP - HTTP POST with SSE-formatted responses

Built-in API conversions: to_openai_tools(), to_anthropic_tools(), to_google_tools()

MCP Protocol Support

Implements MCP 2025-06-18 specification:

  • Tools: list, call, streaming, annotations, structured outputs
  • Prompts: list, get with parameters
  • Resources: list, read, templates, subscriptions, pagination
  • Elicitation: Server-initiated user interactions (stdio, SSE, Streamable HTTP)
  • Roots: Filesystem scope boundaries with change notifications
  • Sampling: Server-requested LLM completions
  • Completion: Autocomplete for prompts/resources
  • Logging: Server log messages with level filtering
  • OAuth 2.1: PKCE, server discovery, dynamic registration

Quick Connect API (Recommended)

The simplest way to connect to an MCP server:

require 'mcp_client'

# Auto-detect transport from URL
client = MCPClient.connect('http://localhost:8000/sse')      # SSE
client = MCPClient.connect('http://localhost:8931/mcp')      # Streamable HTTP
client = MCPClient.connect('npx -y @modelcontextprotocol/server-filesystem /home')  # stdio

# With options
client = MCPClient.connect('http://api.example.com/mcp',
  headers: { 'Authorization' => 'Bearer TOKEN' },
  read_timeout: 60,
  retries: 3,
  logger: Logger.new($stdout)
)

# Multiple servers
client = MCPClient.connect(['http://server1/mcp', 'http://server2/sse'])

# Force specific transport
client = MCPClient.connect('http://custom.com/api', transport: :streamable_http)

# Use the client
tools = client.list_tools
result = client.call_tool('example_tool', { param: 'value' })
client.cleanup

Transport Detection:

URL Pattern Transport
Ends with /sse SSE
Ends with /mcp Streamable HTTP
stdio://command or Array stdio
npx, node, python, etc. stdio
Other HTTP URLs Auto-detect (Streamable HTTP → SSE → HTTP)

Working with Tools, Prompts & Resources

# Tools
tools = client.list_tools
result = client.call_tool('tool_name', { param: 'value' })
result = client.call_tool('tool_name', { param: 'value' }, server: 'server_name')

# Batch tool calls
results = client.call_tools([
  { name: 'tool1', parameters: { key: 'value' } },
  { name: 'tool2', parameters: { key: 'value' }, server: 'specific_server' }
])

# Streaming (SSE/Streamable HTTP)
client.call_tool_streaming('tool', { param: 'value' }).each do |chunk|
  puts chunk
end

# Prompts
prompts = client.list_prompts
result = client.get_prompt('greeting', { name: 'Alice' })

# Resources
result = client.list_resources
contents = client.read_resource('file:///example.txt')
contents.each do |content|
  puts content.text if content.text?
  data = Base64.decode64(content.blob) if content.binary?
end

MCP 2025-06-18 Features

Tool Annotations

tool = client.find_tool('delete_user')
tool.read_only?              # Safe to execute?
tool.destructive?            # Warning: destructive operation
tool.requires_confirmation?  # Needs user confirmation

Structured Outputs

tool = client.find_tool('get_weather')
tool.structured_output?  # Has output schema?
tool.output_schema       # JSON Schema for output

result = client.call_tool('get_weather', { location: 'SF' })
data = result['structuredContent']  # Type-safe structured data

Roots

# Set filesystem scope boundaries
client.roots = [
  { uri: 'file:///home/user/project', name: 'Project' },
  { uri: 'file:///var/log', name: 'Logs' }
]

# Access current roots
client.roots

Sampling (Server-requested LLM completions)

# Configure handler when creating client
client = MCPClient.connect('http://server/mcp',
  sampling_handler: ->(messages, model_prefs, system_prompt, max_tokens) {
    # Process server's LLM request
    {
      'model' => 'gpt-4',
      'stopReason' => 'endTurn',
      'role' => 'assistant',
      'content' => { 'type' => 'text', 'text' => 'Response here' }
    }
  }
)

Completion (Autocomplete)

result = client.complete(
  ref: { type: 'ref/prompt', name: 'greeting' },
  argument: { name: 'name', value: 'A' }
)
# => { 'values' => ['Alice', 'Alex'], 'total' => 100, 'hasMore' => true }

Logging

# Set log level
client.log_level = 'debug'  # debug/info/notice/warning/error/critical

# Handle log notifications
client.on_notification do |server, method, params|
  if method == 'notifications/message'
    puts "[#{params['level']}] #{params['logger']}: #{params['data']}"
  end
end

Elicitation (Server-initiated user interactions)

client = MCPClient::Client.new(
  mcp_server_configs: [MCPClient.stdio_config(command: 'python server.py')],
  elicitation_handler: ->(message, schema) {
    puts "Server asks: #{message}"
    # Return: { 'action' => 'accept', 'content' => { 'field' => 'value' } }
    # Or: { 'action' => 'decline' } or { 'action' => 'cancel' }
  }
)

Advanced Configuration

For more control, use create_client with explicit configs:

client = MCPClient.create_client(
  mcp_server_configs: [
    MCPClient.stdio_config(command: 'npx server', name: 'local'),
    MCPClient.sse_config(
      base_url: 'https://api.example.com/sse',
      headers: { 'Authorization' => 'Bearer TOKEN' },
      read_timeout: 30, ping: 10, retries: 3
    ),
    MCPClient.http_config(
      base_url: 'https://api.example.com',
      endpoint: '/rpc',
      headers: { 'Authorization' => 'Bearer TOKEN' }
    ),
    MCPClient.streamable_http_config(
      base_url: 'https://api.example.com/mcp',
      read_timeout: 60, retries: 3
    )
  ],
  logger: Logger.new($stdout)
)

# Or load from JSON file
client = MCPClient.create_client(server_definition_file: 'servers.json')

Faraday Customization

MCPClient.http_config(base_url: 'https://internal.company.com') do |faraday|
  faraday.ssl.cert_store = custom_cert_store
  faraday.ssl.verify = true
end

Server Definition JSON

{
  "mcpServers": {
    "filesystem": {
      "type": "stdio",
      "command": "npx",
      "args": ["-y", "@modelcontextprotocol/server-filesystem", "/home"]
    },
    "api": {
      "type": "streamable_http",
      "url": "https://api.example.com/mcp",
      "headers": { "Authorization": "Bearer TOKEN" }
    }
  }
}

AI Integration Examples

OpenAI

require 'mcp_client'
require 'openai'

mcp = MCPClient.connect('npx -y @modelcontextprotocol/server-filesystem .')
tools = mcp.to_openai_tools

client = OpenAI::Client.new(api_key: ENV['OPENAI_API_KEY'])
response = client.chat.completions.create(
  model: 'gpt-4',
  messages: [{ role: 'user', content: 'List files' }],
  tools: tools
)

Anthropic

require 'mcp_client'
require 'anthropic'

mcp = MCPClient.connect('npx -y @modelcontextprotocol/server-filesystem .')
tools = mcp.to_anthropic_tools

client = Anthropic::Client.new(access_token: ENV['ANTHROPIC_API_KEY'])
# Use tools with Claude API

See examples/ for complete implementations:

  • ruby_openai_mcp.rb, openai_ruby_mcp.rb - OpenAI integration
  • ruby_anthropic_mcp.rb - Anthropic integration
  • gemini_ai_mcp.rb - Google Vertex AI integration

OAuth 2.1 Authentication

require 'mcp_client/auth/browser_oauth'

oauth = MCPClient::Auth::OAuthProvider.new(
  server_url: 'https://api.example.com/mcp',
  redirect_uri: 'http://localhost:8080/callback',
  scope: 'mcp:read mcp:write'
)

browser_oauth = MCPClient::Auth::BrowserOAuth.new(oauth)
token = browser_oauth.authenticate  # Opens browser, handles callback

client = MCPClient::Client.new(
  mcp_server_configs: [{
    type: 'streamable_http',
    base_url: 'https://api.example.com/mcp',
    oauth_provider: oauth
  }]
)

Features: PKCE, server discovery (.well-known), dynamic registration, token refresh.

See OAUTH.md for full documentation.

Server Notifications

client.on_notification do |server, method, params|
  case method
  when 'notifications/tools/list_changed'
    client.clear_cache  # Auto-handled
  when 'notifications/message'
    puts "Log: #{params['data']}"
  when 'notifications/roots/list_changed'
    puts "Roots changed"
  end
end

Session Management

Both HTTP and Streamable HTTP transports automatically handle session-based servers:

  • Session capture: Extracts Mcp-Session-Id from initialize response
  • Session persistence: Includes session header in subsequent requests
  • Session termination: Sends DELETE request during cleanup
  • Resumability (Streamable HTTP): Tracks event IDs for message replay

No configuration required - works automatically.

Server Compatibility

Works with any MCP-compatible server:

FastMCP Example

# Start server
python examples/echo_server_streamable.py
# Connect and use
client = MCPClient.connect('http://localhost:8931/mcp')
tools = client.list_tools
result = client.call_tool('echo', { message: 'Hello!' })

Requirements

  • Ruby >= 3.2.0
  • No runtime dependencies

License

Available as open source under the MIT License.

Contributing

Bug reports and pull requests welcome at https://github.com/simonx1/ruby-mcp-client.