RubyLLM::MCP
Aiming to make using MCP with RubyLLM as easy as possible.
This project is a Ruby client for the Model Context Protocol (MCP), designed to work seamlessly with RubyLLM. This gem enables Ruby applications to connect to MCP servers and use their tools, resources and prompts as part of LLM conversations.
Note: This project is still under development and the API is subject to change.
Features
- 🔌 Multiple Transport Types: Support for SSE (Server-Sent Events), Streamable HTTP, and stdio transports
- 🛠️ Tool Integration: Automatically converts MCP tools into RubyLLM-compatible tools
- 📄 Resource Management: Access and include MCP resources (files, data) and resource templates in conversations
- 🎯 Prompt Integration: Use predefined MCP prompts with arguments for consistent interactions
- 🔄 Real-time Communication: Efficient bidirectional communication with MCP servers
- 🎨 Enhanced Chat Interface: Extended RubyLLM chat methods for seamless MCP integration
- 📚 Simple API: Easy-to-use interface that integrates seamlessly with RubyLLM
Installation
Add this line to your application's Gemfile:
gem 'ruby_llm-mcp'
And then execute:
bundle install
Or install it yourself as:
gem install ruby_llm-mcp
Usage
Basic Setup
First, configure your RubyLLM client and create an MCP connection:
require 'ruby_llm/mcp'
# Configure RubyLLM
RubyLLM.configure do |config|
config.openai_api_key = "your-api-key"
end
# Connect to an MCP server via SSE
client = RubyLLM::MCP.client(
name: "my-mcp-server",
transport_type: :sse,
config: {
url: "http://localhost:9292/mcp/sse"
}
)
# Or connect via stdio
client = RubyLLM::MCP.client(
name: "my-mcp-server",
transport_type: :stdio,
config: {
command: "node",
args: ["path/to/mcp-server.js"],
env: { "NODE_ENV" => "production" }
}
)
# Or connect via streamable HTTP
client = RubyLLM::MCP.client(
name: "my-mcp-server",
transport_type: :streamable,
config: {
url: "http://localhost:8080/mcp",
headers: { "Authorization" => "Bearer your-token" }
}
)
Using MCP Tools with RubyLLM
# Get available tools from the MCP server
tools = client.tools
puts "Available tools:"
tools.each do |tool|
puts "- #{tool.name}: #{tool.description}"
end
# Create a chat session with MCP tools
chat = RubyLLM.chat(model: "gpt-4")
chat.with_tools(*client.tools)
# Ask a question that will use the MCP tools
response = chat.ask("Can you help me search for recent files in my project?")
puts response
Support Complex Parameters
If you want to support complex parameters, like an array of objects it currently requires a patch to RubyLLM itself. This is planned to be temporary until the RubyLLM is updated.
RubyLLM::MCP.support_complex_parameters!
Streaming Responses with Tool Calls
chat = RubyLLM.chat(model: "gpt-4")
chat.with_tools(*client.tools)
chat.ask("Analyze my project structure") do |chunk|
if chunk.tool_call?
chunk.tool_calls.each do |key, tool_call|
puts "\n🔧 Using tool: #{tool_call.name}"
end
else
print chunk.content
end
end
Manual Tool Execution
You can also execute MCP tools directly:
# Execute a specific tool
result = client.execute_tool(
name: "search_files",
parameters: {
query: "*.rb",
directory: "/path/to/search"
}
)
puts result
Working with Resources
MCP servers can provide access to resources - structured data that can be included in conversations. Resources come in two types: normal resources and resource templates.
Normal Resources
# Get available resources from the MCP server
resources = client.resources
puts "Available resources:"
resources.each do |name, resource|
puts "- #{name}: #{resource.description}"
end
# Access a specific resource
file_resource = resources["project_readme"]
content = file_resource.content
puts "Resource content: #{content}"
# Include a resource in a chat conversation for reference with an LLM
chat = RubyLLM.chat(model: "gpt-4")
chat.with_resource(file_resource)
# Or add a resource directly to the conversation
file_resource.include(chat)
response = chat.ask("Can you summarize this README file?")
puts response
Resource Templates
Resource templates are parameterized resources that can be dynamically configured:
# Get available resource templates
templates = client.resource_templates
log_template = templates["application_logs"]
# Use a template with parameters
chat = RubyLLM.chat(model: "gpt-4")
chat.with_resource(log_template, arguments: {
date: "2024-01-15",
level: "error"
})
response = chat.ask("What errors occurred on this date?")
puts response
# You can also get templated content directly
content = log_template.content(arguments: {
date: "2024-01-15",
level: "error"
})
puts content
Resource Argument Completion
For resource templates, you can get suggested values for arguments:
template = client.resource_templates["user_profile"]
# Search for possible values for a specific argument
suggestions = template.arguments_search("username", "john")
puts "Suggested usernames:"
suggestions.arg_values.each do |value|
puts "- #{value}"
end
puts "Total matches: #{suggestions.total}"
puts "Has more: #{suggestions.has_more}"
Working with Prompts
MCP servers can provide predefined prompts that can be used in conversations:
# Get available prompts from the MCP server
prompts = client.prompts
puts "Available prompts:"
prompts.each do |name, prompt|
puts "- #{name}: #{prompt.description}"
prompt.arguments.each do |arg|
puts " - #{arg.name}: #{arg.description} (required: #{arg.required})"
end
end
# Use a prompt in a conversation
greeting_prompt = prompts["daily_greeting"]
chat = RubyLLM.chat(model: "gpt-4")
# Method 1: Ask prompt directly
response = chat.ask_prompt(greeting_prompt, arguments: { name: "Alice", time: "morning" })
puts response
# Method 2: Add prompt to chat and then ask
chat.with_prompt(greeting_prompt, arguments: { name: "Alice", time: "morning" })
response = chat.ask("Continue with the greeting")
Combining Resources, Prompts, and Tools
You can combine all MCP features for powerful conversations:
client = RubyLLM::MCP.client(
name: "development-assistant",
transport_type: :sse,
config: { url: "http://localhost:9292/mcp/sse" }
)
chat = RubyLLM.chat(model: "gpt-4")
# Add tools for capabilities
chat.with_tools(*client.tools)
# Add resources for context
chat.with_resource(client.resources["project_structure"])
chat.with_resource(
client.resource_templates["recent_commits"],
arguments: { days: 7 }
)
# Add prompts for guidance
chat.with_prompt(
client.prompts["code_review_checklist"],
arguments: { focus: "security" }
)
# Now ask for analysis
response = chat.ask("Please review the recent commits using the checklist and suggest improvements")
puts response
Transport Types
SSE (Server-Sent Events)
Best for web-based MCP servers or when you need HTTP-based communication:
client = RubyLLM::MCP.client(
name: "web-mcp-server",
transport_type: :sse,
config: {
url: "https://your-mcp-server.com/mcp/sse"
}
)
Streamable HTTP
Best for HTTP-based MCP servers that support streaming responses:
client = RubyLLM::MCP.client(
name: "streaming-mcp-server",
transport_type: :streamable,
config: {
url: "https://your-mcp-server.com/mcp",
headers: { "Authorization" => "Bearer your-token" }
}
)
Stdio
Best for local MCP servers or command-line tools:
client = RubyLLM::MCP.client(
name: "local-mcp-server",
transport_type: :stdio,
config: {
command: "python",
args: ["-m", "my_mcp_server"],
env: { "DEBUG" => "1" }
}
)
Configuration Options
-
name
: A unique identifier for your MCP client -
transport_type
: Either:sse
,:streamable
, or:stdio
-
request_timeout
: Timeout for requests in milliseconds (default: 8000) -
config
: Transport-specific configuration- For SSE:
{ url: "http://..." }
- For Streamable:
{ url: "http://...", headers: {...} }
- For stdio:
{ command: "...", args: [...], env: {...} }
- For SSE:
Development
After checking out the repo, run bin/setup
to install dependencies. Then, run rake spec
to run the tests. You can also run bin/console
for an interactive prompt that will allow you to experiment.
To install this gem onto your local machine, run bundle exec rake install
. To release a new version, update the version number in version.rb
, and then run bundle exec rake release
, which will create a git tag for the version, push git commits and the created tag, and push the .gem
file to rubygems.org.
Examples
Check out the examples/
directory for more detailed usage examples:
-
examples/test_local_mcp.rb
- Complete example with SSE transport
Contributing
We welcome contributions! Bug reports and pull requests are welcome on GitHub at https://github.com/patvice/ruby_llm-mcp.
License
Released under the MIT License.