Universal Document Processor
A comprehensive Ruby gem that provides unified document processing capabilities across multiple file formats. Extract text, metadata, images, and tables from PDFs, Word documents, Excel spreadsheets, PowerPoint presentations, images, archives, and more with a single, consistent API.
๐ฏ Features
Unified Document Processing
- Single API for all document types
- Intelligent format detection and processing
- Production-ready error handling and fallbacks
- Extensible architecture for future enhancements
Supported File Formats
- ๐ Documents: PDF, DOC, DOCX, RTF
- ๐ Spreadsheets: XLS, XLSX, CSV, TSV
- ๐บ Presentations: PPT, PPTX
- ๐ผ๏ธ Images: JPG, PNG, GIF, BMP, TIFF
- ๐ Archives: ZIP, RAR, 7Z
- ๐ Text: TXT, HTML, XML, JSON, Markdown
Advanced Content Extraction
- Text Extraction: Full text content from any supported format
- Metadata Extraction: File properties, author, creation date, etc.
- Image Extraction: Embedded images from documents
- Table Detection: Structured data extraction
- Character Validation: Invalid character detection and cleaning
- Multi-language Support: Full Unicode support including Japanese (ๆฅๆฌ่ช)
- Archive Creation: Create ZIP files from individual files or directories
Character & Encoding Support
- Smart encoding detection (UTF-8, Shift_JIS, EUC-JP, ISO-8859-1)
- Invalid character detection and cleaning
- Japanese text support (Hiragana, Katakana, Kanji)
- Control character handling
- Text repair and normalization
๐ Installation
Add this line to your application's Gemfile:
gem 'universal_document_processor'
And then execute:
bundle install
Or install it yourself as:
gem install universal_document_processor
Optional Dependencies
For enhanced functionality, install additional gems:
# PDF processing
gem 'pdf-reader', '~> 2.0'
gem 'prawn', '~> 2.4'
# Microsoft Office documents
gem 'docx', '~> 0.8'
gem 'roo', '~> 2.8'
# Image processing
gem 'mini_magick', '~> 4.11'
# Universal text extraction fallback
gem 'yomu', '~> 0.2'
๐ Quick Start
Basic Usage
require 'universal_document_processor'
# Process any document
result = UniversalDocumentProcessor.process('document.pdf')
# Extract text only
text = UniversalDocumentProcessor.extract_text('document.docx')
# Get metadata only
metadata = UniversalDocumentProcessor.get_metadata('spreadsheet.xlsx')
Processing Result
result = UniversalDocumentProcessor.process('document.pdf')
# Returns comprehensive information:
{
file_path: "document.pdf",
content_type: "application/pdf",
file_size: 1024576,
text_content: "Extracted text content...",
metadata: {
title: "Document Title",
author: "Author Name",
page_count: 25
},
images: [...],
tables: [...],
processed_at: 2025-07-06 10:30:00 UTC
}
๐ง Advanced Usage
Character Validation and Cleaning
# Analyze text quality and character issues
analysis = UniversalDocumentProcessor.analyze_text_quality(text)
# Returns:
{
encoding: "UTF-8",
valid_encoding: true,
has_invalid_chars: false,
has_control_chars: true,
character_issues: [...],
statistics: {
total_chars: 1500,
japanese_chars: 250,
hiragana_chars: 100,
katakana_chars: 50,
kanji_chars: 100
},
japanese_analysis: {
japanese: true,
scripts: ['hiragana', 'katakana', 'kanji'],
mixed_with_latin: true
}
}
Text Cleaning
# Clean text by removing invalid characters
clean_text = UniversalDocumentProcessor.clean_text(corrupted_text, {
remove_null_bytes: true,
remove_control_chars: true,
normalize_whitespace: true
})
File Encoding Validation
# Validate file encoding (supports Japanese encodings)
validation = UniversalDocumentProcessor.validate_file('japanese_document.txt')
# Returns:
{
detected_encoding: "Shift_JIS",
valid: true,
content: "ใใใซใกใฏ",
analysis: {...}
}
Japanese Text Support
# Check if text contains Japanese
is_japanese = UniversalDocumentProcessor.japanese_text?("ใใใซใกใฏ World")
# => true
# Detailed Japanese analysis
japanese_info = UniversalDocumentProcessor.validate_japanese_text("ใใใซใกใฏ ไธ็")
# Returns detailed Japanese character analysis
Batch Processing
# Process multiple documents
file_paths = ['file1.pdf', 'file2.docx', 'file3.xlsx']
results = UniversalDocumentProcessor.batch_process(file_paths)
# Returns array with success/error status for each file
Document Conversion
# Convert to different formats
text_content = UniversalDocumentProcessor.convert('document.pdf', :text)
json_data = UniversalDocumentProcessor.convert('document.docx', :json)
๐ Detailed Examples
Processing PDF Documents
# Extract comprehensive PDF information
result = UniversalDocumentProcessor.process('report.pdf')
# Access specific data
puts "Title: #{result[:metadata][:title]}"
puts "Pages: #{result[:metadata][:page_count]}"
puts "Images found: #{result[:images].length}"
puts "Tables found: #{result[:tables].length}"
# Get text content
full_text = result[:text_content]
Creating PDF Documents
# Install Prawn for PDF creation (optional dependency)
# gem install prawn
# Create PDF from any supported document format
pdf_path = UniversalDocumentProcessor.create_pdf('document.docx')
puts "PDF created at: #{pdf_path}"
# Or use the convert method
pdf_path = UniversalDocumentProcessor.convert('spreadsheet.xlsx', :pdf)
# Check if PDF creation is available
if UniversalDocumentProcessor.pdf_creation_available?
puts "PDF creation is available!"
else
puts "Install 'prawn' gem to enable PDF creation: gem install prawn"
end
# The created PDF includes:
# - Document title and metadata
# - Full text content with formatting
# - Tables (if present in original document)
# - File information and statistics
Processing Excel Spreadsheets
# Extract data from Excel files
result = UniversalDocumentProcessor.process('data.xlsx')
# Access spreadsheet-specific metadata
metadata = result[:metadata]
puts "Worksheets: #{metadata[:worksheet_count]}"
puts "Has formulas: #{metadata[:has_formulas]}"
# Extract tables/data
tables = result[:tables]
tables.each_with_index do |table, index|
puts "Table #{index + 1}: #{table[:rows]} rows"
end
Processing TSV (Tab-Separated Values) Files
# Process TSV files with built-in support
result = UniversalDocumentProcessor.process('data.tsv')
# TSV-specific metadata
metadata = result[:metadata]
puts "Format: #{metadata[:format]}" # => "tsv"
puts "Delimiter: #{metadata[:delimiter]}" # => "tab"
puts "Rows: #{metadata[:total_rows]}"
puts "Columns: #{metadata[:total_columns]}"
puts "Has headers: #{metadata[:has_headers]}"
# Extract structured data
tables = result[:tables]
table = tables.first
puts "Headers: #{table[:headers].join(', ')}"
puts "Sample row: #{table[:data][1].join(' | ')}"
# Format conversions
document = UniversalDocumentProcessor::Document.new('data.tsv')
# Convert TSV to CSV
csv_output = document.to_csv
puts "CSV conversion: #{csv_output.length} characters"
# Convert TSV to JSON
json_output = document.to_json
puts "JSON conversion: #{json_output.length} characters"
# Convert CSV to TSV
csv_document = UniversalDocumentProcessor::Document.new('data.csv')
tsv_output = csv_document.to_tsv
puts "TSV conversion: #{tsv_output.length} characters"
# Statistical analysis
stats = document.extract_statistics
sheet_stats = stats['Sheet1']
puts "Total cells: #{sheet_stats[:total_cells]}"
puts "Numeric cells: #{sheet_stats[:numeric_cells]}"
puts "Text cells: #{sheet_stats[:text_cells]}"
puts "Average value: #{sheet_stats[:average_value]}"
# Data validation
validation = document.validate_data
sheet_validation = validation['Sheet1']
puts "Data quality score: #{sheet_validation[:data_quality_score]}%"
puts "Empty rows: #{sheet_validation[:empty_rows]}"
puts "Duplicate rows: #{sheet_validation[:duplicate_rows]}"
Processing Word Documents
# Extract from Word documents
result = UniversalDocumentProcessor.process('report.docx')
# Get document structure
metadata = result[:metadata]
puts "Word count: #{metadata[:word_count]}"
puts "Paragraph count: #{metadata[:paragraph_count]}"
# Extract embedded images
images = result[:images]
puts "Found #{images.length} embedded images"
Processing Japanese Documents & Filenames
# Process Japanese content
japanese_doc = "ใใใซใกใฏ ไธ็๏ผ Hello World!"
analysis = UniversalDocumentProcessor.analyze_text_quality(japanese_doc)
# Japanese-specific information
japanese_info = analysis[:japanese_analysis]
puts "Contains Japanese: #{japanese_info[:japanese]}"
puts "Scripts found: #{japanese_info[:scripts].join(', ')}"
puts "Mixed with Latin: #{japanese_info[:mixed_with_latin]}"
# Character statistics
stats = analysis[:statistics]
puts "Hiragana: #{stats[:hiragana_chars]}"
puts "Katakana: #{stats[:katakana_chars]}"
puts "Kanji: #{stats[:kanji_chars]}"
# Japanese filename support
filename = "้่ฆใช่ณๆ_2024ๅนดๅบฆ.pdf"
validation = UniversalDocumentProcessor.validate_filename(filename)
puts "Japanese filename: #{validation[:contains_japanese]}"
puts "Filename valid: #{validation[:valid]}"
# Safe filename generation
safe_name = UniversalDocumentProcessor.safe_filename("ใใผใฟใใกใคใซ<้่ฆ>.xlsx")
puts "Safe filename: #{safe_name}" # => "ใใผใฟใใกใคใซ_้่ฆ_.xlsx"
# Process documents with Japanese filenames
result = UniversalDocumentProcessor.process("ๆฅๆฌ่ชใใกใคใซ.pdf")
puts "Original filename: #{result[:filename_info][:original_filename]}"
puts "Contains Japanese: #{result[:filename_info][:contains_japanese]}"
puts "Japanese parts: #{result[:filename_info][:japanese_parts]}"
๐ค AI Agent Integration
The gem includes a powerful AI agent that provides intelligent document analysis and interaction capabilities using OpenAI's GPT models:
Quick AI Analysis
# Set your OpenAI API key
ENV['OPENAI_API_KEY'] = 'your-api-key-here'
# Quick AI-powered analysis
summary = UniversalDocumentProcessor.ai_summarize('document.pdf', length: :short)
insights = UniversalDocumentProcessor.ai_insights('document.pdf')
classification = UniversalDocumentProcessor.ai_classify('document.pdf')
# Extract specific information
key_info = UniversalDocumentProcessor.ai_extract_info('document.pdf', ['dates', 'names', 'amounts'])
action_items = UniversalDocumentProcessor.ai_action_items('document.pdf')
# Translate documents (great for Japanese documents)
translation = UniversalDocumentProcessor.ai_translate('ๆฅๆฌ่ชๆๆธ.pdf', 'English')
Interactive AI Agent
# Create a persistent AI agent for conversations
agent = UniversalDocumentProcessor.create_ai_agent(
model: 'gpt-4',
temperature: 0.7,
max_history: 10
)
# Process document and start conversation
document = UniversalDocumentProcessor::Document.new('report.pdf')
# Ask questions about the document
response1 = document.ai_chat('What is this document about?')
response2 = document.ai_chat('What are the key financial figures?')
response3 = document.ai_chat('Based on our discussion, what should I focus on?')
# Get conversation summary
summary = agent.conversation_summary
Advanced AI Features
# Compare multiple documents
comparison = UniversalDocumentProcessor.ai_compare(
['doc1.pdf', 'doc2.pdf', 'doc3.pdf'],
:content # or :themes, :structure, etc.
)
# Document-specific AI analysis
document = UniversalDocumentProcessor::Document.new('business_plan.pdf')
analysis = document.ai_analyze('What are the growth projections?')
insights = document.ai_insights
classification = document.ai_classify
action_items = document.ai_action_items
# Japanese document support
japanese_doc = UniversalDocumentProcessor::Document.new('ใใญใธใงใฏใ่จ็ปๆธ.pdf')
translation = japanese_doc.ai_translate('English')
summary = japanese_doc.ai_summarize(length: :medium)
AI Configuration Options
# Custom AI agent configuration
## โ๏ธ Agentic AI Configuration & Usage
To enable and use the AI-powered features (agentic AI) in your application, follow these steps:
### 1. Install AI Dependency
You need the `ruby-openai` gem for AI features:
```bash
gem install ruby-openai
Or add to your Gemfile:
gem 'ruby-openai'
Then run:
bundle install
2. Set Your OpenAI API Key
You must provide your OpenAI API key for agentic AI features to work. You can do this in two ways:
a) Environment Variable (Recommended)
Set the API key in your environment (e.g., in .env
, application.yml
, or your deployment environment):
ENV['OPENAI_API_KEY'] = 'your-api-key-here'
b) Pass Directly When Creating the Agent
agent = UniversalDocumentProcessor.create_ai_agent(api_key: 'your-api-key-here')
3. Rails: Where to Configure
If you are using Rails, add your configuration to:
config/initializers/universal_document_processor.rb
Example initializer:
# config/initializers/universal_document_processor.rb
require 'universal_document_processor'
# Set your API key (or use ENV)
ENV['OPENAI_API_KEY'] ||= 'your-api-key-here' # (or use Rails credentials)
# Optionally, create a default agent with custom options
UniversalDocumentProcessor.create_ai_agent(
model: 'gpt-4',
temperature: 0.7,
max_history: 10
)
Rails.logger.info "Universal Document Processor with AI agent loaded" if defined?(Rails)
4. Using Agentic AI Features
You can now use the AI-powered methods:
summary = UniversalDocumentProcessor.ai_summarize('document.pdf', length: :short)
insights = UniversalDocumentProcessor.ai_insights('document.pdf')
classification = UniversalDocumentProcessor.ai_classify('document.pdf')
key_info = UniversalDocumentProcessor.ai_extract_info('document.pdf', ['dates', 'names', 'amounts'])
action_items = UniversalDocumentProcessor.ai_action_items('document.pdf')
translation = UniversalDocumentProcessor.ai_translate('ๆฅๆฌ่ชๆๆธ.pdf', 'English')
Or create and use a persistent agent:
agent = UniversalDocumentProcessor.create_ai_agent(
api_key: 'your-openai-key', # OpenAI API key
model: 'gpt-4', # Model to use (gpt-4, gpt-3.5-turbo)
temperature: 0.3, # Response creativity (0.0-1.0)
max_history: 20, # Conversation memory length
base_url: 'https://api.openai.com/v1' # Custom API endpoint
)
# Chat about a document
response = agent.analyze_document('report.pdf')
Note:
- The API key is required for all AI features.
- You can override the model, temperature, and other options per agent.
- For more, see the
USER_GUIDE.md
and the examples above.
## ๐ฆ Archive Processing (ZIP Creation & Extraction)
The gem provides comprehensive archive processing capabilities, including both extracting from existing archives and creating new ZIP files.
### Extracting from Archives
```ruby
# Extract text and metadata from ZIP archives
result = UniversalDocumentProcessor.process('archive.zip')
# Access archive-specific metadata
metadata = result[:metadata]
puts "Archive type: #{metadata[:archive_type]}" # => "zip"
puts "Total files: #{metadata[:total_files]}" # => 15
puts "Uncompressed size: #{metadata[:total_uncompressed_size]} bytes"
puts "Compression ratio: #{metadata[:compression_ratio]}%" # => 75%
puts "Directory structure: #{metadata[:directory_structure]}"
# Check for specific file types
puts "File types: #{metadata[:file_types]}" # => {"txt"=>5, "pdf"=>3, "jpg"=>7}
puts "Has executables: #{metadata[:has_executable_files]}" # => false
puts "Largest file: #{metadata[:largest_file][:path]} (#{metadata[:largest_file][:size]} bytes)"
# Extract text from text files within the archive
text_content = result[:text_content]
puts "Combined text from archive: #{text_content.length} characters"
Creating ZIP Archives
# Create ZIP from individual files
files_to_zip = ['document1.pdf', 'document2.txt', 'image.jpg']
output_zip = 'my_archive.zip'
zip_path = UniversalDocumentProcessor::Processors::ArchiveProcessor.create_zip(
output_zip,
files_to_zip
)
puts "ZIP created: #{zip_path}"
# Create ZIP from entire directory (preserves folder structure)
directory_to_zip = '/path/to/documents'
archive_path = UniversalDocumentProcessor::Processors::ArchiveProcessor.create_zip(
'directory_backup.zip',
directory_to_zip
)
puts "Directory archived: #{archive_path}"
# Working with temporary directories
require 'tmpdir'
Dir.mktmpdir do |tmpdir|
# Create some test files
File.write(File.join(tmpdir, 'file1.txt'), 'Hello from file 1')
File.write(File.join(tmpdir, 'file2.txt'), 'Hello from file 2')
# Create subdirectory with files
subdir = File.join(tmpdir, 'subfolder')
Dir.mkdir(subdir)
File.write(File.join(subdir, 'file3.txt'), 'Hello from subfolder')
# Archive the entire directory structure
zip_file = File.join(tmpdir, 'complete_backup.zip')
UniversalDocumentProcessor::Processors::ArchiveProcessor.create_zip(zip_file, tmpdir)
puts "Archive size: #{File.size(zip_file)} bytes"
# Verify archive contents by processing it
archive_result = UniversalDocumentProcessor.process(zip_file)
puts "Files in archive: #{archive_result[:metadata][:total_files]}"
end
# Error handling for ZIP creation
begin
UniversalDocumentProcessor::Processors::ArchiveProcessor.create_zip(
'/invalid/path/archive.zip',
['file1.txt', 'file2.txt']
)
rescue => e
puts "Error creating ZIP: #{e.message}"
end
# Validate input before creating ZIP
files = ['doc1.pdf', 'doc2.txt']
files.each do |file|
unless File.exist?(file)
puts "Warning: #{file} does not exist"
end
end
Archive Analysis
# Analyze archive security and structure
result = UniversalDocumentProcessor.process('suspicious_archive.zip')
metadata = result[:metadata]
# Security analysis
if metadata[:has_executable_files]
puts "โ ๏ธ Archive contains executable files"
end
# Directory structure analysis
structure = metadata[:directory_structure]
puts "Top-level directories: #{structure.keys.join(', ')}"
# File type distribution
file_types = metadata[:file_types]
puts "Most common file type: #{file_types.max_by{|k,v| v}}"
๐ Japanese Filename Support
The gem provides comprehensive support for Japanese filenames across all operating systems:
Basic Filename Validation
# Check if filename contains Japanese characters
UniversalDocumentProcessor.japanese_filename?("ๆฅๆฌ่ชใใกใคใซ.pdf")
# => true
# Validate Japanese filename
validation = UniversalDocumentProcessor.validate_filename("ใใใซใกใฏไธ็.docx")
puts validation[:valid] # => true
puts validation[:contains_japanese] # => true
puts validation[:japanese_parts] # => {hiragana: ["ใ","ใ","ใซ","ใก","ใฏ"], katakana: [], kanji: ["ไธ","็"]}
# Handle mixed language filenames
validation = UniversalDocumentProcessor.validate_filename("Project_ใใญใธใงใฏใ_2024.xlsx")
puts validation[:contains_japanese] # => true
Safe Filename Generation
# Create cross-platform safe filenames
problematic_name = "ใใผใฟใใกใคใซ<้่ฆ>:็ฎก็.xlsx"
safe_name = UniversalDocumentProcessor.safe_filename(problematic_name)
puts safe_name # => "ใใผใฟใใกใคใซ_้่ฆ__็ฎก็.xlsx"
# Handle extremely long Japanese filenames
long_name = "้ๅธธใซ้ทใใใกใคใซๅ" * 20 + ".pdf"
safe_name = UniversalDocumentProcessor.safe_filename(long_name)
puts safe_name.bytesize <= 200 # => true (safely truncated)
Encoding Analysis & Normalization
# Analyze filename encoding
filename = "ใใผใฟใใกใคใซ.pdf"
analysis = UniversalDocumentProcessor::Utils::JapaneseFilenameHandler.analyze_filename_encoding(filename)
puts "Original encoding: #{analysis[:original_encoding]}"
puts "Recommended encoding: #{analysis[:recommended_encoding]}"
# Normalize filename to UTF-8
normalized = UniversalDocumentProcessor.normalize_filename(filename)
puts normalized.encoding # => UTF-8
Document Processing with Japanese Filenames
# Process documents with Japanese filenames
result = UniversalDocumentProcessor.process("้่ฆใชไผ่ญฐ่ณๆ.pdf")
# Access filename information
filename_info = result[:filename_info]
puts "Original: #{filename_info[:original_filename]}"
puts "Japanese: #{filename_info[:contains_japanese]}"
puts "Validation: #{filename_info[:validation][:valid]}"
# Japanese character breakdown
japanese_parts = filename_info[:japanese_parts]
puts "Hiragana: #{japanese_parts[:hiragana]&.join('')}"
puts "Katakana: #{japanese_parts[:katakana]&.join('')}"
puts "Kanji: #{japanese_parts[:kanji]&.join('')}"
Cross-Platform Compatibility
# Test filename compatibility across platforms
test_files = [
"ๆฅๆฌ่ชใใกใคใซ.pdf", # Standard Japanese
"ใใใซใกใฏworld.docx", # Mixed Japanese-English
"ใใผใฟ_analysis.xlsx", # Japanese with underscore
"ไผ่ญฐ่ญฐไบ้ฒ๏ผ้่ฆ๏ผ.txt" # Japanese with parentheses
]
test_files.each do |filename|
validation = UniversalDocumentProcessor.validate_filename(filename)
safe_version = UniversalDocumentProcessor.safe_filename(filename)
puts "#{filename}:"
puts " Windows compatible: #{validation[:valid]}"
puts " Safe version: #{safe_version}"
puts " Byte size: #{safe_version.bytesize} bytes"
end
๐ Character Validation Features
Detecting Invalid Characters
text_with_issues = "Hello\x00World\x01ใใใซใกใฏ"
analysis = UniversalDocumentProcessor.analyze_text_quality(text_with_issues)
# Check for specific issues
puts "Has null bytes: #{analysis[:has_null_bytes]}"
puts "Has control chars: #{analysis[:has_control_chars]}"
puts "Valid encoding: #{analysis[:valid_encoding]}"
# Get detailed issue report
issues = analysis[:character_issues]
issues.each do |issue|
puts "#{issue[:type]}: #{issue[:message]} (#{issue[:severity]})"
end
Text Repair Strategies
corrupted_text = "Hello\x00World\x01ใใใซใกใฏ\uFFFD"
# Conservative repair (recommended)
clean = UniversalDocumentProcessor::Processors::CharacterValidator.repair_text(
corrupted_text, :conservative
)
# Aggressive repair (removes all non-printable)
clean = UniversalDocumentProcessor::Processors::CharacterValidator.repair_text(
corrupted_text, :aggressive
)
# Replace strategy (replaces with safe alternatives)
clean = UniversalDocumentProcessor::Processors::CharacterValidator.repair_text(
corrupted_text, :replace
)
๐๏ธ Configuration
Checking Available Features
# Check what features are available based on installed gems
features = UniversalDocumentProcessor.available_features
puts "Available features: #{features.join(', ')}"
# Check specific dependencies
puts "PDF processing: #{UniversalDocumentProcessor.dependency_available?(:pdf_reader)}"
puts "Word processing: #{UniversalDocumentProcessor.dependency_available?(:docx)}"
puts "Excel processing: #{UniversalDocumentProcessor.dependency_available?(:roo)}"
Custom Options
# Process with custom options
options = {
extract_images: true,
extract_tables: true,
clean_text: true,
validate_encoding: true
}
result = UniversalDocumentProcessor.process('document.pdf', options)
๐๏ธ Architecture
The gem uses a modular processor-based architecture:
- BaseProcessor: Common functionality and interface
- PdfProcessor: Advanced PDF processing
- WordProcessor: Microsoft Word documents
- ExcelProcessor: Spreadsheet processing
- PowerpointProcessor: Presentation processing
- ImageProcessor: Image analysis and OCR
- ArchiveProcessor: Compressed file handling
- TextProcessor: Plain text and markup files
- CharacterValidator: Text quality and encoding validation
๐ Multi-language Support
Supported Encodings
- UTF-8 (recommended)
- Shift_JIS (Japanese)
- EUC-JP (Japanese)
- ISO-8859-1 (Latin-1)
- Windows-1252
- ASCII
Supported Scripts
- Latin (English, European languages)
- Japanese (Hiragana, Katakana, Kanji)
- Chinese (Simplified/Traditional)
- Korean (Hangul)
- Cyrillic (Russian, etc.)
- Arabic
- Hebrew
โก Performance
Benchmarks (Average)
- Small PDF (1-10 pages): 0.5-2 seconds
- Large PDF (100+ pages): 5-15 seconds
- Word Document: 0.3-1 second
- Excel Spreadsheet: 0.5-3 seconds
- PowerPoint: 1-5 seconds
- Image with OCR: 2-10 seconds
Best Practices
- Use batch processing for multiple files
- Process files asynchronously for better UX
- Implement caching for frequently accessed documents
- Set appropriate timeouts for large files
- Monitor memory usage in production
๐ Security
File Validation
- MIME type verification prevents file spoofing
- File size limits prevent resource exhaustion
- Content scanning for malicious payloads
- Sandbox processing for untrusted files
Best Practices
- Always validate uploaded files before processing
- Set reasonable limits on file size and processing time
- Use temporary directories with proper cleanup
- Log processing activities for audit trails
- Handle errors gracefully without exposing system info
๐งช Rails Integration
Controller Example
class DocumentsController < ApplicationController
def create
uploaded_file = params[:file]
# Process the document
result = UniversalDocumentProcessor.process(uploaded_file.tempfile.path)
# Store in database
@document = Document.create!(
filename: uploaded_file.original_filename,
content_type: result[:content_type],
text_content: result[:text_content],
metadata: result[:metadata]
)
render json: { success: true, document: @document }
rescue UniversalDocumentProcessor::Error => e
render json: { success: false, error: e.message }, status: 422
end
end
Background Job Example
class DocumentProcessorJob < ApplicationJob
def perform(document_id)
document = Document.find(document_id)
result = UniversalDocumentProcessor.process(document.file_path)
document.update!(
text_content: result[:text_content],
metadata: result[:metadata],
processed_at: Time.current
)
end
end
๐จ Error Handling
The gem provides comprehensive error handling with custom exceptions:
begin
result = UniversalDocumentProcessor.process('document.pdf')
rescue UniversalDocumentProcessor::UnsupportedFormatError => e
# Handle unsupported file format
rescue UniversalDocumentProcessor::ProcessingError => e
# Handle processing failure
rescue UniversalDocumentProcessor::DependencyMissingError => e
# Handle missing optional dependency
rescue UniversalDocumentProcessor::Error => e
# Handle general gem errors
end
๐งช Testing
Run the test suite:
bundle exec rspec
Run with coverage:
COVERAGE=true bundle exec rspec
๐ค Contributing
- Fork the repository
- Create your feature branch (
git checkout -b feature/amazing-feature
) - Commit your changes (
git commit -am 'Add amazing feature'
) - Push to the branch (
git push origin feature/amazing-feature
) - Create a Pull Request
Development Setup
git clone https://github.com/yourusername/universal_document_processor.git
cd universal_document_processor
bundle install
bundle exec rspec
๐ Changelog
Version 1.1.0
- Initial release
- Support for PDF, Word, Excel, PowerPoint, images, archives
- Character validation and cleaning
- Japanese text support
- Multi-encoding support
- Batch processing capabilities
๐ Support
- Issues: GitHub Issues
- Documentation: Wiki
- Email: vikas.v.patil1696@gmail.com
๐ License
The gem is available as open source under the terms of the MIT License.
๐จโ๐ป Author
Vikas Patil
- Email: vikas.v.patil1696@gmail.com
- GitHub: @vpatil160
๐ Acknowledgments
- Built with Ruby and love โค๏ธ
- Thanks to all the amazing open source libraries this gem depends on
- Special thanks to the Ruby community for continuous inspiration
Made with โค๏ธ for the Ruby community